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A theory is presented which incorporates the effect of dielectric anisotropy in random multiple
scattering media. It predicts anisotropic diffusion, and a deflection of the diffuse energy flow in anisotropic
slabs in the direction parallel to the slab. The transmittance integrated over all incoming and outgoing
directions scales with the transport mean free path along the surface normal. The escape function in
anisotropic dielectrics is no longer bell shaped. In this model anisotropy facilitates Anderson localization.
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The effects of anisotropy on transport of waves are
currently studied in a variety of fields such as electronics,
seismology, biology, and optics [1–13]. An understanding
of the effect of anisotropy on wave transport is crucial for
acquiring information about the structure of scattering
materials. Both ballistic propagation and multiple scatter-
ing of seismic waves are affected by the anisotropy of
Earth’s crust [1–4]. Furthermore, anisotropy is very im-
portant in diffuse optical tomography, where anisotropic
diffusion is observed in biological tissue such as skin,
teeth, muscle, and bone [5,6]. Interference effects in
wave transport are also strongly influenced by anisotropy,
e.g., enhanced backscattering of light in semiconductors or
liquid crystals [7–11]. Ultimately interference can lead to
the extreme case of Anderson localization, a situation in
which the radiance is confined by interference effects in a
random scattering medium. Strong anisotropy could effec-
tively reduce a 3-dimensional medium to a quasi 1- or 2-
dimensional medium where Anderson localization might
be much easier to observe [12,13].

In this Letter, we explain the effect of anisotropy on the
diffusion of scalar waves through randomly distributed
scatterers in an anisotropic host medium. We start with
amplitude properties in homogeneous, anisotropic host
media and then we add scatterers. From the amplitude
properties we derive diffuse energy density transport.
Whereas in isotropic media the diffusion constant is known
to be a product of a transport mean free path and a transport
velocity,D � vl=3, we find a diffusion tensor in which the
transport mean free path and transport velocity turn out to
be vectors. A key observable of illuminated random media
is the escape function [14], which describes the angular
dependence of the radiance that escapes the medium. We
show that the escape function, which has a universal ap-
pearance for isotropic media, strongly depends on the
anisotropy. Finally we investigate the effect of anisotropy
on wave interference and we derive a Ioffe-Regel criterion
for Anderson localization in anisotropic media.

Our starting point is a homogeneous, anisotropic scalar
wave equation,
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We map (2) on the energy density of electromagnetic
waves in a homogeneous, anisotropic dielectric, with per-
mittivity tensor " and permeability scalar �, both real
valued. We identify the dimensionless anisotropy tensor
A � 3"�1=Tr�"�1� and isotropic velocity c2

i �
Tr�"�1�=�3��. A similar mapping can be found in [15],
but with the electric and magnetic fields interchanged. In
our description of the electromagnetic field by a scalar
potential the transverse polarization of the electromagnetic
fields is essentially lost. The wave character is retained,
and we expect our scalar theory to be able to describe
energy transport in anisotropic media of electromagnetic
waves which have fully scrambled polarization.

In a homogeneous anisotropic space both the phase
velocity vp (a scalar) and the group velocity vg (a vector)
are real quantities and depend on the direction of the wave
vector ek. They are given by

 vp�k� �
!�k�
jkj
� ci

���������������������
ek � A � ek

p
; (3)
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vp�ek�
A � ek; (4)

where !�k� is the dispersion relation in the homogeneous
anisotropic medium. Only along the principal axes ea of
the dielectric tensor we have vg�ea� � vp�ea�ea. We define
a homogeneous but anisotropic refractive index m for the
medium without scatterers by

 m�ek� �
c0

ci

1���������������������
ek � A � ek

p ; (5)
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with c0 the velocity of light in vacuum. Refractive index (5)
is a nontrivial generalization of m � c0=ci valid for iso-
tropic media.

The scatterers are introduced by means of a frequency!
dependent scattering potential

 V!�x; x0� � �
!2

c2
i

�
��x�
�
� 1

�
�3�x� x0�: (6)

If we were to define scatterers as inhomogeneities in the
permittivity, then we would introduce unwanted nonlocal
effects. The scalar Helmholtz equation for the amplitude
Green function G in the presence of scatterers is
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A single elastic scatterer placed in an anisotropic me-
dium gives rise to scattering and extinction cross sections
�s and �e, for which we establish the optical theorem
�s � �e. The cross sections generalized to anisotropic
media we found are in terms of the single scatterer T
matrix T!�ek; ek1

� given by

 �s�ek� �
hT!�ek; ek1

�T�!�ek; ek1
�iek1

4�
����������
detA
p ; (8)

 �e�ek� � �
ciIm�T!�ek; ek��

!
: (9)

where we suppress the dependence on !. New in the
scattering cross section (8) is anisotropy of the surrounding
medium, which enters through the average h. . .i over the
anisotropic surface at constant frequency,

 h. . .iek �
Z d2ek

4�
. . .������������������������������������������

�ek � A � ek�3 detA�1
p ; (10)

a special case of a three dimensional integral over the
dispersion relation for which we can use a coordinate
transformation to calculate h1iek � 1 and hekekiek �
A�1=3. Furthermore, the momentum transfer cross section
� is in anisotropic media found to be
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3
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where vg�ek� � h3vg�ek2
�vg�ek2

�i�1
ek2
� 	vg�ek� � vg�ek1

�
 is
the well known factor 1� cos� � 1� ek � ek1

generalized
to anisotropic media [15–18]. In the independent scattering
limit for scatterer density n we introduce the scattering
mean free path ls�ek� � jvg�ek�j=	cin�s�ek�
.

The conserved quantity in multiple scattering of light is
energy, which is related to the radiance. We want to set up a
transport equation for the energy density, or for the radi-
ance, which is conserved along a flow line [19]. For the
anisotropic medium with isotropic scatterers we can derive
a Bethe-Salpeter equation for the ensemble averaged prod-
uct of amplitude Green functions hhG�Gii. The Bethe-
Salpeter equation is a generalized transport equation in
the sense that it contains all interference effects [15]. We
introduce the specific intensity or radiance per unit fre-
quency band by approximating the dispersion relation with
the one for the anisotropic medium without scatterers. We
integrate the Bethe-Salpeter equation over the wave vector
magnitude to obtain a radiative transfer equation for the
radiance.

We obtain an anisotropic diffusion equation for the total
energy density if we expand the radiance self-consistently
in terms of the radiative energy density and flux [15,16,19–
21]. The first two moments of the radiative transfer equa-
tion give rise to a continuity equation and a Fick law
relating the total energy density and flux.

The diffusion constant we obtain is a second rank sym-
metric tensor, and is also obtainable from the Kubo formal-
ism [9,18,22,23]. We find

 D �
�hvg�ek�vg�ek�iek

1� �
�

1

3

�c2
i
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In (12) we have in order of appearance a mean free time �,
the group velocity vg from (4), and a � which is related to
the energy density temporarily stored in the elastic scat-
terers [15,24]. In the independent scattering limit for scat-
terer density n, the average mean free time � is

 ci� �
1

nh��ek�iek
: (13)

In experiments the scattering medium is always
bounded. Consider a semi-infinite scattering medium
with the boundary plane through some x with unit surface
normal n?. At x all energy density flux components
headed into the scattering medium should add up to zero,
as there is no diffuse energy density w present outside the
scattering medium. If we set this requirement we find the
boundary condition for diffusion in media with anisotropic
dispersion

 0 � 1
4n? � v�n?�w�t; x� �

1
2n? � D � rw�t; x�; (14)

where v�n?� the energy transport velocity. We can formu-
late boundary condition (14) for boundaries of arbitrary
orientation n?, and we identify the transport velocity v to
be

 v �ek� �
vg�ek�

1� �
; (15)

and note that in (14) v�n?� points along A � n?. The
transport mean free path vector can now be defined by
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 l �ek� �
3ek � D
ek � v�ek�

� �vg�ek�: (16)

Equations (12) and (14)–(16) lead to the equivalent bound-
ary condition w�t; x� � 2l�n?� � rw�t; x�=3, so l�n?� is
for a given boundary directed along A � n?.

The diffusion tensor (12) becomes an average (10) over
the product of (15) and (16),

 D � hv�ek�l�ek�iek �
X3

i�1

1

3
v�ei�l�ei� � eiei; (17)

with feig the three principal axes of the anisotropy, and in
isotropic media we obtain D � jvjjlj1=3.

The escape function governs the distribution of escaping
radiance over angles. For semi-infinite media we calculate

 K�ek;n?� �
3

2Nn?

��������vg�ek�ci

��������2
u�ek;n?�	�e�n?�

� u�ek;n?�
; (18)

where Nn? is defined by hK�ek;n?�iek � 1 with ek limited
to all outgoing flux components, n? � vg�ek� � 0, �e is the
extrapolation ratio

 �e�n?� �
2l�n?� � n?

3ls�n?�
; (19)

which for isotropic scatterers becomes �e � 2=3, and u is
the generalization of the cos� � n? � ek known from the
isotropic medium [14], u is given by

 u�ek;n?� �

���������������������������������������������
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�
2
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where the unit vector ekk parallel to the boundary is the
direction along the components of k perpendicular to n?,

 e kk �
	1� n?n?
 � ek������������������������������

1� �ek � n?�
2

p : (21)

If we have on both sides of the boundary an isotropic
medium, then m�ek� � m�ekk �, and u reduces to cos�,

 uiso�ek;n?� �
�����������������������������
1� �ek � ekk �

2
q

�
���������������������
�ek � n?�

2
q

: (22)

We calculate escape function (18) for realistic values of
the anisotropic permittivity and isotropic scatterers, see
Fig. 1. In contrast to the universal appearance of the escape
function in isotropic media [14], we predict nonuniversal
behavior. The shift of the position of the maximum and the
appearance of a second maximum are related to the fact
that jlj has its minimum where jvgj is minimal. For an-
isotropy parallel to the surface we predict two maxima.
The energy density current is deflected in the direction
perpendicular to the surface normal. We note that it is
only possible to perfectly index match an anisotropic me-

dium with isotropic scatterers to an outside world if the
anisotropy axes are parallel or perpendicular to the bound-
ary. In general the escape function acquires an imaginary
part when u2 < 0, implying internal reflection.

In slab geometries we have two boundaries. With n? the
outward pointing boundary surface normal, we calculate
the angle resolved transmission function T�ei; es;n?�. For
slabs of thickness L� ls�n?� only diffuse light is trans-
mitted and we find

 T�ei; es;n?� �
4

3

l?�n?�K�ei;n?�K�es;n?�

L� 4
3 l?�n?�

; (23)

where the subscripts i and s stand for incoming wave and
scattered wave, respectively. Equation (23) has the ex-
pected plain form of the isotropic medium result [14],
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FIG. 1 (color online). Escape functions aK��� for a semi-
infinite medium with isotropic point scatterers, and a plane
source inside. The anisotropic dielectric tensor "r � 1� 3dd,
with unit vector d the director of the anisotropy. Angle � of wave
vector ek and outward pointing surface normal n? is defined by
cos� � ek � n?. The escape function is plotted for several direc-
tor orientations � defined by cos� � d � n?. Scale factor a �
2�K"r�1�0�=K"r �0� makes all � � 0 values coincide. In (a) ek is
in the plane with normal n?  �d n?�, and in (b) in the plane
with normal d n?. We see an anisotropic bell shape for � �
�=2. When � � �=4 perfect index matching is impossible and
we get internal reflection for � > �=4. When � � 0 we see two
maxima, with symmetry around d.
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containing a transport mean free path of which we have
shown that in general it is a vector component. If we
integrate (23) over all incoming and outgoing directions
the escape functions K disappear, and we find that the
result is T�n?� � 4l?�n?�=�3L�, proportional to the trans-
port length, and all vg dependence has disappeared.

We can generalize the Ioffe-Regel criterion for infinite
isotropic media to infinite anisotropic media. Following
[22], we improve the Boltzmann approximation to the
irreducible Bethe-Salpeter vertex by adding the maximally
crossed correction

 U � njTj2 �
4�

ci�2

1

�p� p0� � D � �p� p0�
: (24)

The first term describes isotropic point scatterers in the
Boltzmann limit njTj2, self-consistency imposes that D be
the diffusion constant including the maximally crossed
correction. Together with a wave vector cutoff given by
kmax � �=ek � l�ek�, with parameter � � �=6 to recover
the isotropic Ioffe-Regel criterion kl � 1, this leads to

 D�1 � D�1
B �

1

detAhk � l�ek�i2ek
D�1; (25)

where DB is given by (12). It is generally accepted that kl
quantizes scattering strength, of which hk � l�ek�iek is the
logical generalization to anisotropic media. The transition
to Anderson localization is at

 hk � l�ek�iek �

����������
1

detA

s
; (26)

and is affected by the anisotropy in the dielectric tensor
through detA. For elastic scatterers we can check the
scaling of the left-hand side of (26) through Eqs. (8) and
(9), which imply that the cross sections are proportional to����������

detA
p

, making the transport mean free path inversely
proportional to

����������
detA
p

. In terms of the positive eigenvalues
"i of the dielectric tensor " the right-hand side of (26) reads����������������������������������������������������������������������������
�1=3�3"1"2"3�1="1 � 1="2 � 1="3�

3
p

, and achieves a
minimum for isotropic media. Therefore, while keeping
the inhomogeneity (6) of the medium fixed, we can obtain
Anderson localization in anisotropic media for higher val-
ues of hk � l�ek�iek . For example, in dielectrics with "1 �

"2 � �2=11�"3 the transition occurs at 16=11, which is
larger than the isotropic value 1. This result could have
been expected from the wave equation (1), where an axis
with high dielectric constant tends to reduce the relative
importance of that spatial dimension.

In conclusion, we found that the vector transport mean
free path and the vector transport velocity depend on the
surface normal and the principal axes of the anisotropy.
The escape function in anisotropic dielectrics is no longer
the well-known expression K��� � cos�	1� �3=2� cos�
,
which is universal in isotropic media and often applied to
anisotropic media, but we find that the anisotropic host

medium can deflect the diffuse energy density current. In a
slab geometry the transmittance integrated over all incom-
ing and outgoing directions is proportional to the transport
length along the surface normal. Our model, with homoge-
neous anisotropy, confirms a more general picture that
anisotropic dielectrics are advantageous for Anderson
localization.
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